Argo Getting Started

To see how Argo works, you can run examples of simple workflows and workflows that use artifacts. For the latter, you'll set up an artifact repository for storing the artifacts that are passed in the workflows. Here are the requirements and steps to run the workflows.


  • Installed Kubernetes 1.8 or later
  • Installed the kubectl command-line tool
  • Have a kubeconfig file (default location is ~/.kube/config).

1. Download Argo

On Mac:

$ brew install argoproj/tap/argo

On Linux:

$ curl -sSL -o /usr/local/bin/argo
$ chmod +x /usr/local/bin/argo

2. Install the Controller and UI

$ argo install


  • On GKE with RBAC enabled, you may need to grant your account the ability to create new cluster roles

    $ kubectl create clusterrolebinding YOURNAME-cluster-admin-binding --clusterrole=cluster-admin
  • The subsequent instructions below assume the installation of argo into the kube-system namespace (the default behavior). A different namespace can be chosen using the argo install --namespace <name> flag, in which case you should substitute kube-system with your chosen namespace in the examples below.

3. Configure the service account to run workflows (required for RBAC clusters)

For clusters with RBAC enabled, the 'default' service account is too limited to do any kind of meaningful work. Run the following command to grant admin privileges to the 'default' service account in the namespace 'default':

$ kubectl create rolebinding default-admin --clusterrole=admin --serviceaccount=default:default

NOTE: You can also submit workflows using a different service account using the argo submit --serviceaccount <name> flag.

4. Run Simple Example Workflows

$ argo submit
$ argo submit
$ argo submit
$ argo list
$ argo get xxx-workflow-name-xxx
$ argo logs xxx-pod-name-xxx #from get command above

You can also run workflows directly with kubectl. However, the Argo CLI offers extra features that kubectl does not, such as YAML validation, workflow visualization, and overall less typing.

$ kubectl create -f
$ kubectl get wf
$ kubectl get wf hello-world-xxx
$ kubectl get po --show-all
$ kubectl logs hello-world-yyy -c main

Additional examples are availabe here.

5. Install an Artifact Repository

Argo supports S3 (AWS, GCS, Minio) as well as Artifactory as artifact repositories. This tutorial uses Minio for the sake of portability. Instructions on how to configure other artifact repositories are here.

$ brew install kubernetes-helm # mac
$ helm init
$ helm install stable/minio --name argo-artifacts --set service.type=LoadBalancer

Login to the Minio UI using a web browser (port 9000) after exposing obtaining the external IP using kubectl.

$ kubectl get service argo-artifacts-minio -o wide

On Minikube:

$ minikube service --url argo-artifacts-minio

NOTE: When minio is installed via Helm, it uses the following hard-wired default credentials, which you will use to login to the UI:


Create a bucket named my-bucket from the Minio UI.

6. Reconfigure the workflow controller to use the Minio artifact repository

Edit the workflow-controller config map to reference the service name (argo-artifacts-minio) and secret (argo-artifacts-minio) created by the helm install:

$ kubectl edit configmap workflow-controller-configmap -n kube-system
    executorImage: argoproj/argoexec:v2.1.0
        bucket: my-bucket
        endpoint: argo-artifacts-minio.default:9000
        insecure: true
        # accessKeySecret and secretKeySecret are secret selectors.
        # It references the k8s secret named 'argo-artifacts-minio'
        # which was created during the minio helm install. The keys,
        # 'accesskey' and 'secretkey', inside that secret are where the
        # actual minio credentials are stored.
          name: argo-artifacts-minio
          key: accesskey
          name: argo-artifacts-minio
          key: secretkey

The Minio secret is retrived from the namespace you use to run workflows. If Minio is installed in a different namespace then you will need to create a copy of its secret in the namespace you use for workflows.

7. Run a workflow which uses artifacts

$ argo submit

8. Access the Argo UI

By default, the Argo UI service is not exposed with an external IP. To access the UI, use one of the following methods:

Method 1: kubectl port-forward


$ kubectl port-forward $(kubectl get pods -n kube-system -l app=argo-ui -o jsonpath='{.items[0]}') -n kube-system 8001:8001

Then visit:

Method 2: kubectl proxy


$ kubectl proxy

Then visit:

NOTE: artifact download and webconsole is not supported using this method

Method 3: Use a LoadBalancer

Update the argo-ui service to be of type LoadBalancer.

$ kubectl patch svc argo-ui -n kube-system -p '{"spec": {"type": "LoadBalancer"}}'

Then wait for the external IP to be made available:

$ kubectl get svc argo-ui -n kube-system
NAME      TYPE           CLUSTER-IP      EXTERNAL-IP     PORT(S)        AGE
argo-ui   LoadBalancer   80:30999/TCP   1m

NOTE: On Minikube, you won't get an external IP after updating the service -- it will always show pending. Run the following command to determine the Argo UI URL:

$ minikube service -n kube-system --url argo-ui